
The Language to rule them all..
Language Reference

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

1

Table of contents
1. Basic Types
 4

2. Syntax
 4

• Constants
 5

• Operations
 5

• Unary operations
 6

• Parentheses
 6

• Blocks
 6

• Local Variables
 7

• Identifiers
 7

• Field access
 8

• Calls
 8

• New
 8

• Arrays
 8

• If
 9

• While
 9

• For
 10

• Return
 10

• Break and Continue
 10

• Exceptions
 11

• Switch
 11

• Local Functions
 12

• Anonymous Objects
 13

3. Type Inference
 13

• Local variable inference
 13

• Function types inference
 13

• User Choice
 14

4. Object Oriented Programming
 14

• Classes
 14

• Constructor
 15

• Class Inheritance
 16

5. Type Parameters
 17

• Constraint Parameters
 17

• Constructors parameters
 18

• Switch on Enum
 19

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

2

• Switch with Constructor Parameters
 19

• Enum Type Parameters
 20

6. Packages and Imports
 21

• Imports
 21

• Type Lookup
 21

• Enum Constructors
 22

7. Dynamic
 22

• Dynamic Parameter
 22

• Implementing Dynamic
 22

• Type Casting
 23

• Untyped
 23

• Unsafe Cast
 23

8. Advanced Types
 24

• Anonymous
 24

• Typedef
 24

• Functions
 25

• Unknown
 25

• Extensions
 26

9. Iterators
 26

• Implementing Iterator
 27

• Iterable Objects
 27

10.Properties
 28

• Sample
 28

• Important Remarks
 29

• Dynamic Property
 29

11.Optional Arguments
 30

• Default values
 30

12.Conditional Compilation
 31

13.Inline
 31

• Inlining Static Variables
 31

• Inlining Methods
 32

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

3

Basic Types
The haXe syntax is Java/ActionScript/C++ like.

A source code file is composed of an optional package name followed by
several imports and type declarations. By convention, package names are
composed of several identifiers each of which start with a lowercase letter
and are separated from one another by periods ".", while type identifiers
always start with an uppercase letter.

There are several kinds of types. The two important ones are classes and
enums. Here are some of the basic types as declared in the standard
library :

 enum Void {
 }

 class Float {
 }

 class Int extends Float {
 }

 enum Bool {
 true;
 false;
 }

 enum Dynamic<T> {
 }

Let's see each type one by one :

 Void is declared as an enum. An enumeration lists a number of valid
constructors. An empty enumeration such as Void does not have any
constructor. However, it's still a valid type that can be used.

 Float is a floating point number class. It doesn't have any method so it
can be greatly optimized on some platforms.

 Int is an integer. It doesn't have methods either but it inherits from
Float, so it means that everywhere a Float is requested, you can
use an Int, while the contrary is not true. And that seems pretty
correct.

 Bool is an enumeration, like Void, but it has two instances true and
false. As you can see, even standard types can be defined easily
using the haXe type system. It also means you can use it to define
your own types.

 Dynamic is an enum with a type parameter. We will explain how to
use type parameters later in this document.

Syntax
In haXe, all expressions have the same level. It means that you can nest
them together recursively without any problem. For example : foo(if (x
== 3) 5 else 8). As this example shows, it also means that every

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

4

expression returns a value of a given type.

Constants
The following constant values can be used :

0; // Int
-134; // Int
0xFF00; // Int

123.0; // Float
.14179; // Float
13e50; // Float
-1e-99; // Float

"hello"; // String
"hello \"world\" !"; // String
'hello "world" !'; // String

true; // Bool
false; // Bool

null; // Unknown<0>

~/[a-z]+/i; // EReg : regular expression
You will notice that null has a special value that can be used for any type,
and has different behavior than Dynamic. It will be explained in detail
when introducing type inference.

Operations
The following operations can be used, in order of priority :

 v = e : assign a value to an expression, returns e

 += -= *= /= %= &= |= ^= <<= >>= >>>= : assign after
performing the corresponding operation

 e1 || e2 : If e1 is true then true else evaluate e2 . Both e1 and
e2 must be Bool.

 e1 && e2 : If e1 is false then false else evaluate e2 . Both e1
and e2 must be Bool.

 e1...e2 : Build an integer iterator (see later about Iterators).

 == != > < >= <= === !== : perform normal or physical
comparisons between two expressions sharing a common type. Returns
Bool.

 | & ̂ : perform bitwise operations between two Int expressions.
Returns Int.

 << >> >>> : perform bitwise shifts between two Int expressions.
Returns Int.

 e1 + e2 : perform addition. If both expressions are Int then return
Int else if both expressions are either Int or Float then return
Float else return String.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

5

 e1 - e2 : perform subtraction between two Int or Float
expressions. Return Int if both are Int and return Float if they are
either Float and Int.

 e1 * e2 : multiply two numbers, same return type as subtract.

 e1 / e2 : divide two numbers, return Float.

 e1 % e2 : modulo of two numbers, same return type as subtract.

Unary operations

The following unary operations are available :

 ! : boolean not. Inverse the expression Bool value.

 - : negative number, change the sign of the Int or Float value.

 ++ and ---- can be used before or after an expression. When used
before, they first increment the corresponding variable and then
return the incremented value. When used after, they increment the
variable but return the value it had before incrementation. Can only
be used with Int or Float values.

 ~ : ones-complement of an Int.

Note: ~ is usually used for 32-bit integers, so it will not provide expected
results with Neko 31-bits integers, that is why it does not work on Neko.

Parentheses
Expressions can be delimited with parentheses in order to give a specific
priority when performing operations. The type of (e) is the same as e
and they both evaluate to the same value.

Blocks
Blocks can execute several expressions. The syntax of a block is the
following :

{
 e1;
 e2;
 // ...
 eX;
}

A block evaluates to the type and value of the last expression of the block.
For example :

{ f(); x = 124; true; }

This block is of type Bool and will evaluate to true.

As an exception, the empty block { } evaluates to Void.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

6

Local Variables
Local variables can be declared in blocks using var, as the following
samples show:

{
 var x;
 var y = 3;
 var z : String;
 var w : String = "";
 var a, b : Bool, c : Int = 0;
}

A variable can be declared with an optional type and an optional initial
value. If no value is given then the variable is null by default. If no type is
given, then the variable type is Unknown but will still be strictly typed.
This will be explained in details when introducing type inference.

Several local variables can be declared in the same var expression.

Local variables are only defined until the block they're declared in is closed.
They can not be accessed outside the block in which they are declared.

Identifiers
When a variable identifier is found, it is resolved using the following order :

 local variables, last declared having priority
 class members (current class and inherited fields)
 current class static fields
 enum constructors that have been either declared in this file or

imported

 enum Axis {
 x;
 y;
 z;
 }

 class C {
 static var x : Int;
 var x : Int;

 function new() {
 {
 // x at this point means member variable

 // this.x
 var x : String;
 // x at this point means the local

 // variable
 }
 }

 function f(x : String) {

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

7

 // x at this point means the function

 // parameter
 }

 static function f() {
 // x at this point means the class static

 // variable
 }
 }

 class D {
 function new() {
 // x means the x Axis
 }
 }

Type identifiers are resolved according to the imported packages, as we
will explain later.

Field access
Object access is done using the traditional dot-notation :

 o.field

Calls
You can call functions using parentheses and commas in order to delimit
arguments. You can call methods by using dot access on objects :

 f(1,2,3);
 object.method(1,2,3);

New
The new keyword is used in expressions to create a class instance. It needs
a class name and can take parameters :

 a = new Array();
 s = new String("hello");

Arrays
You can create arrays directly from a list of values by using the following
syntax :

 var a : Array<Int> = [1,2,3,4];

Please notice that the type Array takes one type parameter that is the type
of items stored into the Array. This way all operations on arrays are safe. As
a consequence, all items in a given Array must be of the same type.

You can read and write into an Array by using the following traditional
bracket access :

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

8

 first = a[0];
 a[1] = value;

The array index must be of type Int.

If
Here are some examples of if expressions :

 if (life == 0) destroy();
 if (flag) 1 else 2;

Here's the generic syntax of if expressions :

 if(expr-cond) expr-1 [else expr-2]

First expr-cond is evaluated. It must be of type Bool. Then if true then
expr-1 is evaluated, otherwise, if there is an expr-2 then it is evaluated
instead.

If there is no else, and the if expression is false, then the entire
expression has type Void. If there is an else, then expr-1 and expr-2
must be of the same type and this will be the type of the if expression :

 var x : Void = if(flag) destroy();
 var y : Int = if(flag) 1 else 2;

In haXe, if is similar to the ternary C a?b:c syntax.

As an exception, if an if block is not supposed to return any value (like in
the middle of a Block) then both expr-1 and expr-2 can have different
types and the if block type will be Void.

While
While are standard loops that use a precondition or postcondition :

 while(expr-cond) expr-loop;
 do expr-loop while(expr-cond);

For example :

 var i = 0;
 while(i < 10) {
 // ...
 i++;
 }
Or using do...while :

 var i = 0;
 do {
 // ...
 i++;
 } while(i < 10);

Like with if, the expr-cond in a while-loop type must be of type Bool.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

9

Another useful example will produce a loop to count from 10 to 1:

 var i = 10;
 while(i > 0) {

 i--;
 }

For
For loops are little different from traditional C for loops. They're actually
used for iterators, which will be introduced later in this document. Here's
an example of a for loop :

 for(i in 0...a.length) {
 foo(a[i]);
 }

Return
In order to exit from a function before the end or to return a value from a
function, you can use the return expression :

 function odd(x : Int) : Bool {
 if(x % 2 != 0)
 return true;
 return false;
 }

The return expression can be used without argument if the function does
not require a value to be returned :

 function foo() : Void {
 // ...
 if(abort)
 return;
 //
 }

Break and Continue
These two keywords are useful to exit early a for or while loop or to go to
the next iteration of a loop :

 var i = 0;
 while(i < 10) {
 if(i == 7)
 continue; // skip this iteration.
 // do not execute any more statements in this

 // block,
 // BUT go back to evaluating the "while"

 // condition.
 if(flag)
 break; // stop early.
 // Jump out of the "while" loop, and continue

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

10

 // execution with the statement following the

 // while loop.
 }

Exceptions
Exceptions are a way to do non-local jumps. You can throw an exception
and catch it from any calling function on the stack :

 function foo() {
 // ...
 throw new Error("invalid foo");
 }

 // ...

 try {
 foo();
 } catch(e : Error) {
 // handle exception
 }

There can be several catch blocks after a try, in order to catch different
types of exceptions. They're tested in the order they're declared. Catching
Dynamic will catch all exceptions :

 try {
 foo();
 } catch(e : String) {
 // handle this kind of error
 } catch(e : Error) {
 // handle another kind of error
 } catch(e : Dynamic) {
 // handle all other errors
 }

All the try and the catch expressions must have the same return type
except when no value is needed (same as if).

Switch
Switches are a way to express multiple if...else if... else if test
on the same value:

 if(v == 0)
 e1
 else if(v == foo(1))
 e2
 else if(v == 65)
 e3
 else
 e4;

Will translate to the following switch :

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

11

 switch(v) {
 case 0:
 e1;
 case foo(1):
 e2;
 case 65:
 e3;
 default:
 e4;
 }

Switches in haXe are different from traditional switches : all cases are
separate expressions so after one case expression is executed the switch
block is automatically exited. As a consequence, break can't be used in a
switch and the position of the default case is not important.

On some platforms, switches on constant values (especially constant
integers) might be optimized for better speed.

Switches can also be used on enums with a different semantic. It will be
explained later in this document.

Local Functions
Local functions are declared using the function keyword but they can't
have a name. They're values just like literal integers or strings :

 var f = function() { /* ... */ };
 f(); // call the function

Local functions can access their parameters, the current class statics and
also the local variables that were declared before it :

 var x = 10;
 var add = function(n) { x += n; };
 add(2);
 add(3);
 // now x is 15

However, local functions declared in methods cannot access the this
value. You then need to declare a local variable such as me :

 class C {

 var x : Int;

 function f() {
 // WILL NOT COMPILE
 var add = function(n) { this.x += n };
 }

 function f2() {

 // will compile
 var me = this;
 var add = function(n) { me.x += n };

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

12

 }
 }

Anonymous Objects
Anonymous objects can be declared using the following syntax :

 var o = { age : 26, name : "Tom" };

Please note that because of the type inference, anonymous objects are also
strictly typed.

Type Inference
Type Inference means that the type information is not only checked in the
program, it's also carried when typing, so it doesn't have to be resolved
immediatly. For example a local variable can be declared without any type
(it will have the type Unknown) and when first used, its type will be set to
the corresponding one.

Printing a Type
Anywhere in your program, you can use the type operation to know the
type of a given expression. At compilation, the type operation will be
removed and only the expression will remain :

 var x : Int = type(0);

This will print Int at compilation, and compile the same program as if
type was not used.

This is useful to quickly get a type instead of looking at the class or some
documentation.

Local variable inference
Type Inference enables the whole program to be strictly typed without any
need to put types everywhere. In particular, local variables does not need
to be typed, their types will be inferred when they are first accessed for
reading or writing :

 var loc;
 type(loc); // print Unknown<0>
 loc = "hello";
 type(loc); // print String

Function types inference
Declaring the type of parameter passed to a class method or local function
is also optional. The first time the function is used, the type of the
parameter will be set to the type it was used with, just like local variables.
This can be tricky since it will depend on the order in which the program is
executed. Here's an example that shows the problem :

 function f(posx) {

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

13

 //
 }
 // ...

 f(134);
 f(12.2); // Error : Float should be Int

The first call to f sets the type of posx to Int. The second call to f causes
a compilation error because f is now expecting an Int, not a Float.
However if we reverse the two calls to f, the value type is set to Float
first. A second call using an Int does not fail since Int is a subtype of
Float.

 function f(posx) {
 //
 }
 // ...

 f(12.2); // Sets the parameter type to Float
 f(134); // Success

In this example the two calls are near each other so it's quite easy to
understand and fix. In larger programs with more complex cases, fixing such
compilation problems can be tricky. The easiest solution is to explicitly set
the type of the function. Then the call that was responsible for the problem
will be displayed when recompiling.

Drawing from the first example:

 function f(posx : Int) {
 //
 }
 // ...

 f(134);
 f(12.2); // Failure will point to this line

User Choice
Using type inference is a choice. You can simply not type your variables and
functions and let the compiler infer the types for you, or you can type all of
them in order to have more control on the process. The best is maybe in the
middle, by adding some typing in order to improve code documentation and
still be able to write quickly some functions without typing everything.

In all cases, and unless you use dynamics (they will be introduced later),
your program will be strictly typed and any wrong usage will be detected
instantly at compilation.

Object Oriented Programming

Classes
We will quickly introduce the structure of classes that you might already be
familiar with if you've done some OO programming before :

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

14

package my.pack;
/*
 this will define the class my.pack.MyClass
*/
class MyClass {
 //
}

A Class can have several variables and methods.

package my.pack;

class MyClass {

 var id : Int;

 static var name : String = "MyString";

 function foo() : Void {
 }

 static function bar(s : String, v : Bool) : Void {
 }
}

Variables and methods can have the following flags :

 static : the field belongs to the Class itself and not to instances of this
class. Static identifiers can be used directly in the class itself. Outside
of the class, it must be used with the class name (for example :
my.pack.MyClass.name).

 public : the field can be accessed by other classes. By default, all
fields are private.

 private : the field access is restricted to the class itself and to classes
that subclass or extends it. This ensures that the class internal state
is not accessible.

All class variables must be declared with a type (you can use Dynamic if
you don't know which type to use). Function arguments and return types are
optional but are still stricly checked as we will see when introducing type
inference.

Static variables can have an initial value although it's not required.

Constructor
The class can have only one constructor, which is the not-static function
called new. This is a keyword that can also be used to name a class
function :

 class Point {
 public var x : Int;
 public var y : Int;

 public function new() {
 this.x = 0;

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

15

 this.y = 0;
 }

 }

Constructor parametrization & overloading :

 public function new (x : Int, ?y : Int){
 this.x = x;
 this.y = (y == null) ? 0 : y; // "y" is
optional
 }

Class Inheritance
When declared, it's possible that a class extends one class and implements
several classes or interfaces. This means the class will inherit several types
at the same time, and can be treated as such. For example :

class D extends A, implements B, implements C {
}

Every instance of D will have the type D but you will also be able to use it
where an instance of type A, B or C is required. This means that every
instance of D also has the types A , B and C.

Extends

When extending a class, your class inherits from all public and private not-
static fields. You can then use them in your class as if they where declared
here. You can also override a method by redefining it with the same number
of arguments and types as its superclass. Your class can not inherit static
fields.
When a method is overridden, then you can still access the superclass
method using super :

class B extends A {
 function foo() : Int {
 return super.foo() + 1;
 }
}

In your class constructor you can call the superclass constructor using also
super :

class B extends A {
 function new() {
 super(36,"");
 }
}

Implements

When implementing a class or an interface, your class is required to
implement all the fields declared or inherited by the class it implements,

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

16

with same type and name. However the field might already be inherited
from a superclass.

Interfaces

Interface are classes prototypes. They are declared using the interface
keyword. By default, all interfaces fields are public. Interfaces cannot be
instantiated.

interface PointProto {
 var x : Int;
 var y : Int;
 function length() : Int;
}

An interface can also implements one or several interfaces :

interface PointMore implements PointProto {
 function distanceTo(p : PointProto) : Float;
}

Type Parameters
A class can have several type parameters that can be used to get extensible
behavior. For example, the Array class have one type parameter :

 class Array<T> {

 function new() {
 // ...
 }

 function get(pos : Int) : T {
 // ...
 }

 function set(pos : Int, val : T) : Void {
 // ...
 }
 }

Inside the Array class, the type T is abstract and then its fields and
methods are not accessible. However when you declare an array you need
to specify its type : Array<Int> or Array<String> for example. This
will act the same as if you had replaced all types T in Array declaration by
the type you're specifying.

Type parameter is very useful in order to get strict typing of containers such
as Array, List, Tree... You can define your own parameterized classes
with several type parameters for your own usage when you need it.

Constraint Parameters
While it's nice to be able to define abstract parameters, it is also possible
to define several constraints on them in order to be able to use them in the
class implementation. For example :

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

17

 class EvtQueue<T : (Event, EventDispatcher)> {
 var evt : T;
 // ...
 }

In this class, the field evt, although it's a class parameter, the typer knows
that it has both types Event and EventDispatcher so it can actually
access it like if it was implementing both classes. Later, when an EvtQueue
is created, the typer will check that the type parameter will either extends
or implements the two types Event and EventDispatcher. When
multiple constraint parameters are defined for a single class parameter, as
in the example above, they should be placed within parenthesis in order to
disambiguate from cases where more class parameters are to follow.

Type parameters constraints are a powerful advanced feature, that can be
really useful to write generic code that can be reused in different
applications.

Enums

Enums are another type than classes and are declared with a finite number
of constructors. Here's a small sample :

 enum Color {
 red;
 green;
 blue;
 }

 class Colors {
 static function toInt(c : Color) : Int {
 return switch(c) {
 case red: 0xFF0000;
 case green: 0x00FF00;
 case blue: 0x0000FF;

 }
 }
 }

When you want to ensure that only a fixed number of values are used then
enums are the best thing since they guarantee that other values cannot be
constructed.

Constructors parameters
The previous Color sample shows three constant constructors for an enum.
It is also possible to have parameters for constructors :

 enum Color2 {
 red;
 green;
 blue;

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

18

 grey(v : Int);
 rgb(r : Int, g : Int, b : Int);
 }

This way, there is an infinite number of Color2 possible, but they are five
different constructors possible for it. The following values are all Color2 :

 red;
 green;
 blue;
 grey(0);
 grey(128);
 rgb(0x00, 0x12, 0x23);
 rgb(0xFF, 0xAA, 0xBB);

We can also have a recursive type, for example to add alpha :

 enum Color3 {
 red;
 green;
 blue;
 grey(v : Int);
 rgb(r : Int, g : Int, b : Int);
 alpha(a : Int, col : Color3);
 }

The following are valid Color3 values :

 alpha(127, red);
 alpha(255, rgb(0,0,0));

Switch on Enum
Switch have a special semantic when used on an enum. If there is no
default case then it will check that all enum constructor are used, and
you'll get an error if not. For example, using the first Color enum :

 switch(c) {
 case red: 0xFF0000;
 case green: 0x00FF00;
 }

This will cause an compile error telling that the constructor blue is not
used. In that case you can either add a case for it or add a default case that
does something. It's very useful since when you add a new constructor to
your enum, compiler errors will display in your program the places where
the new constructor have to be handled.

Switch with Constructor Parameters
If enum constructor have parameters, they must be listed as variable names
in a switch case. This way all the variables will be locally accessible in the
case expression and correspond to the type of the enum constructor
parameter. For example, using the Color3 enum :

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

19

 class Colors {
 static function toInt(c : Color3) : Int {
 return switch(c) {
 case red: 0xFF0000;
 case green: 0x00FF00;
 case blue: 0x0000FF;
 case grey(v): (v << 16) | (v << 8) | v;
 case rgb(r,g,b): (r << 16) | (g << 8) |
b;
 case alpha(a,c): (a << 24) | (toInt(c) &
0xFFFFFF);
 }
 }

 }

Using switch is the only possible way to access the enum constructors
parameters.

Enum Type Parameters
Enum, as classes, can also have type parameters. The syntax is the same so
here's a small sample of a parameterized linked List using an enum to
store the cells :

 enum Cell<T> {
 empty;
 cons(item : T, next : Cell<T>);
 }

 class List<T> {
 var head : Cell<T>;

 public function new() {
 head = empty;
 }

 public function add(item : T) {
 head = cons(item,head);
 }

 public function length() : Int {
 return cell_length(head);
 }

 private function cell_length(c : Cell<T>) : Int {
 return switch(c) {
 case empty : 0;
 case cons(item,next): 1 + cell_length(next);
 }
 }

 }

Using both enum and classes together can be pretty powerful in some cases.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

20

Packages and Imports
Each file can contain several classes, enums and imports. They are all part
of the package declared at the beginning of the class. If package is not
declared than the default empty package is used. Each type has then a path
corresponding to the package name followed by the type name.

 // file my/pack/C.hx
 package my.pack;

 enum E {
 }

 class C {
 }

This file declares two types : my.pack.E and my.pack.C. It's possible to
have several classes in the same file, but the type name must be unique in
the whole application, so conflicts can appear if you're not using packages
enough (this does not mean that you have to use long packages names
everywhere).

When using packages, your files should be placed into subdirectories having
the same name of it. In general the name of the file is the one of the main
class defined into it.

The file extension for haXe is .hx.

Imports
Imports can be used to have access to all the types of a file without needing
to specify the package name.

 package my.pack2;
 class C2 extends my.pack.C {
 }

Is identical to the following :

 package my.pack2;
 import my.pack.C;

 class C2 extends C {
 }

The only difference is that when using import you can use enum
constructors that were declared in the my/pack/C.hx file.

Type Lookup
When a type name is found, the following lookup is performed, in this
order:

 current class type parameters
 standard types

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

21

 types declared in the current file
 types declared in imported files (if the searched package is empty)
 if not found, the corresponding file is loaded and the type is searched

inside it

Enum Constructors
In order to use enum constructors, the file in which the enum is declared
must first be imported, or you can use the full type path to access
constructors as if they were static fields of the enum type.

 var c : my.pack.Color = my.pack.Color.red;

As an exception, in switch: if the type of the enum is known at compile
time, then you can use constructors directly without the need to import.

Dynamic
When you want to get some dynamically typed behavior and break free
from the type system, you can use the Dynamic type which can be used in
place of any type without any compiler type-checking:

 var x : Dynamic = "";
 x = true;
 x = 1.744;
 x = new Array();

Also, a Dynamic variable has an infinite number of fields, all having the
type Dynamic; it can be used as an Array for bracket syntax, etc...

While this can be useful sometimes, please be careful not to break your
program safety by using too many dynamic variables.

Note that an untyped variable is of type Unknown and not Dynamic. That
is, an untyped variable does not have a type until it is determined by type
inference. A Dynamic variable has a type, an any type.

Dynamic Parameter
As it was said when listing standard library types, Dynamic can also take a
type parameter. When you use Dynamic<String>, it has different
behavior.

Dynamic<String> cannot be used in place of any other type. However, it
has an infinite number of fields which all have the type String. This is
useful to encode Hashtables where items are accessed using dot syntax :

 var att : Dynamic<String> = xml.attributes;
 x.name = "Nicolas";
 x.age = "26";
 // ...

Implementing Dynamic
Any class can also implement Dynamic with or without a type parameter. In

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

22

the first case, the class fields are typed when they exist, otherwise they
have a dynamic type:

class C implements Dynamic<Int> {
 public var name : String;
 public var address : String;
}
// ...
var c = new C();
var n : String = c.name; // ok
var a : String = c.address; // ok
var i : Int = c.phone; // ok : use Dynamic
var c : String = c.country; // ERROR
// c.country is an Int because of Dynamic<Int>

Dynamic behavior is inherited by subclasses. When several classes are
implementing different Dynamic types in a class hierarchy, the last
Dynamic definition is used.

Type Casting
You can cast from one type to another by using the cast keyword.

 var a : A =
 var b : B = cast(a,B);
This will either return the value a with the type B if a is an instance of B or
it will throw an exception "Class cast error".

Untyped
One other way to do dynamic things is to use the untyped keyword. When
an expression is said untyped, no type-check will be done so you can do a
lot of dynamic operations at once :

 untyped { a["hello"] = 0; }

Be careful to use untyped expressions only when you really need them and
when you know what you're doing.

Unsafe Cast
Untyped is pretty powerful but it allows all kind of invalid syntax on the
right side of the untyped keyword. One other possibility is to do an unsafe
cast which is similar to the standard cast except that no type is
specified. That means that the cast call will not result in any runtime
check, but will allow you to "loose" one type.

 var y : B = cast 0;

Cast is somehow the equivalent of storing a value in a temporary Dynamic
variable :

 var tmp : Dynamic = 0;
 var y : B = tmp;

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

23

Advanced Types
Up to now, we have seen the following types :

 class instance
 enum instance
 dynamic

There are several additional important types.

Anonymous
An anonymous type is the type of an anonymously declared object. It is also
the type of a Class identifier (corresponding to all the static fields) or an
Enum identifier (listing all the constructors). Here's an example that shows
it.

 enum State {
 on;
 off;
 disable;
 }

 class C {
 static var x : Int;
 static var y : String;

 function f() {
 // print { id : Int, city : String }
 type({ id : 125, city : "Kyoto" });
 }

 function g() {
 // print { on : State, off : State, disable :
State }
 type(State);
 }

 function h() {
 // print { x : Int, y : String }
 type(C);
 }
 }

Anonymous types are structural, so it's possible to have more fields in the
value than in the type :

 var p : { x : Int, y : Int } = { x : 0, y : 33, z :
-45 };

Typedef
You can define type definitions which are some kind of type-shortcut that

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

24

can be used to give a name to an anonymous type or a long type that you
don't want to repeat everywhere in your program :

typedef User = {
 var age : Int;
 var name : String;
}
//
var u : User = { age : 26, name : "Tom" };

// PointCube is a 3-dimensional array of points
typedef PointCube = Array<Array<Array<Point>>>

Typedef are not classes, they are only used for typing.

Functions
When you want to define function types to use them as variables, you can
define them by listing the arguments followed by the return type and
separated with arrows. For example Int -> Void is the type of a function
taking an Int as argument and returning Void. And Color -> Color -
>Int takes two Color arguments and returns an Int.

 class C {
 function f(x : String) : Int {
 // ...
 }

 function g() {
 type(f); // print String -> Int
 var ftype : String -> String = f;
 // ERROR : should be String -> Int
 }
 }

Unknown
When a type is not declared, it is used with the type Unknown. The first
time it is used with another type, it will change to it. This was explained in
more details in type inference. The id printed with the Unknown type is
used to differentiate several unknowns when printing a complex type.

 function f() {
 var x;
 type(x); // print Unknown<0>
 x = 0;
 type(x); // print Int
 }

The diversity of types expressible with haXe enable more powerful models
of programming by providing high-level abstractions that don't need
complex classes relationships to be used.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

25

Extensions
Extensions can be used to extend either a typedef representing an
anonymous type or to extend a class on-the-fly.

Here's an example of anonymous typedef extension :

 typedef Point = {
 var x : Int;
 var y : Int;
 }

 // define 'p' as a Point with an additional field z
 var p : {> Point, z : Int }
 p = { x : 0, y : 0, z : 0 }; // works
 p = { x : 0, y : 0 }; // fails
For classes, since they don't define types, you need to use a cast when
assigning, it's unsafe so be careful :

 var p : {> flash.MovieClip, tf : flash.TextField };
 p = flash.Lib._root; // fails
 p = cast flash.Lib._root; // works, but no typecheck !
You can also use extensions to create cascading typedefs :

 typedef Point = {
 var x : Int;
 var y : Int;
 }
 typedef Point3D = {> Point,
 var z : Int;
 }

In that case, every Point3D will of course be a Point as well.

Iterators
An iterator is an object which follow the Iterator typedef (The type T is
the iterated type) :

 typedef Iterator<T> = {
 function hasNext() : Bool;
 function next() : T;
 }

You can use the for syntax in order to execute iterators. The most simple
iterator is the IntIter iterator which can easily be built using the
operator ... (three dots). For example this will list all numbers from 0 to
9 :

 for(i in 0...10) {
 // ...
 }

Or the usual for loop :

 for(i in 0...arr.length) {

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

26

 foo(arr[i]);
 }

You don't need to declare the variable i before using a for, since it will be
automatically declared. This variable will only be available inside the for
loop.

Implementing Iterator
You can also define you own iterators. You can simply follow the Iterator
typedef in your class by implementing the hasNext and next methods.
Here's for example the IntIter class that is part of the standard library :

class IntIter {
 var min : Int;
 var max : Int;

 public function new(min : Int, max : Int) {
 this.min = min;
 this.max = max;
 }

 public function hasNext() {
 return(min < max);
 }

 public function next() {
 return min++;
 }
}

Once your iterator is implemented, you can simply use it with the
for...in syntax, this way :

 var iter = new IntIter(0,10);
 for(i in iter) {
 // ...
 }

The variable name in the for is automatically declared and its
type is bound to the iterator type. It is not accessible after the iteration is
done.

Iterable Objects
If an object has a method iterator() taking no arguments and returning
an iterator, it is said iterable. It doesn't have to implement any type. You
can use such class directly into a for expression without the need to call
the iterator() method :

 var a : Array<String> =
["hello","world","I","love","haXe","!"];
 for(txt in a) {
 tf.text += txt + " ";
 }

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

27

This sample will build the string by listing an array elements using an
iterator. It is same as calling a.iterator() in the for expression.

Properties
Properties are a specific way to declare class fields, and can be used to
implement several kind of features such as read-only/write-only fields or
fields accessed through getter-setter methods.

Here's a property declaration example :

class C {

 public var x(getter,setter) : Int;

}

The values for getter and setter can be one of the following :

 a method name that will be used as getter/setter

 null if the access is restricted

 default if the access is a classic field access

 dynamic if the access is done through a runtime-generated method

Sample
Here's a complete example :

class C {
 public var ro(default,null) : Int;
 public var wo(null,default) : Int;
 public var x(getX,setX) : Int;

 private var my_x : Int;

 private function getX() {
 return my_x;
 }

 private function setX(v : Int) {
 if(v >= 0)
 my_x = v;
 return my_x;
 }

}

Using properties declaration, we declare three public fields in the class C :

 outside the class code, the field ro is read only

 outside the class code, the field wo is write only

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

28

 the field x is accessed through a pair of getter/setter methods

For instance, the following two functions are equivalent, although the
methods getX and setX are private and then can't be accessed directly as
in f2 :

 var c : C;
 function f1() {
 c.x *= 2;
 }
 function f2() {
 c.setX(c.getX()*2);
 }

Important Remarks
It's important to know that such features are only working if the type of the
class is known. There is no runtime properties handling, so for instance
the following code will always trace null since the method getX will
never be called :

 var c : Dynamic = new C();
 trace(c.x);

The same goes for read-only and write-only properties. They can always be
modified if the type of the class is unknown.

Also, please note that you have to return a value from the setter function.
The compiler will complain otherwise.

Dynamic Property
The additional dynamic access can be used to add methods at runtime, it's
quite a specific feature that should be used with care. When a dynamic
field x is accessed for reading, the get_x method is called, when accessed
for writing the set_x method is called :

class C {
 public var age(dynamic,dynamic) : Int;
 public function new() {
 }
}

class Test {
 static function main() {
 var c = new C();
 var my_age = 26;
 Reflect.setField(c,"get_age",function() { return
my_age; });
 Reflect.setField(c,"set_age",function(a) { my_age
= a; return my_age; });
 trace(c.age); // 26
 c.age++; // will call c.set_age(c.get_age()+1)
 trace(c.age); // 27

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

29

 }
}

Optional Arguments
Some function parameters can be made optional by using a question mark ?
before the parameter name :

class Test {
 static function foo(x : Int, ?y : Int) {
 trace(x+","+y);
 }
 static function main() {
 foo(1,2); // trace 1,2
 foo(3); // trace 3,null
 }
}

Default values
When not specified, an optional parameter will have the default value
null. It's also possible to define another default value, by using the
following syntax :

 static function foo(x : Int, ?y : Int = 5) {
 // ...
 }
Thanks to type inference, you can also shorten the syntax to the following :

 static function foo(x : Int, y = 5) {
 // ...
 }

Ordering

Although it is advised to put optional parameters at the end of the function
parameters, you can use them in the beginning or in the middle also.

Also, optional parameters are independent in haXe. It means that one
optional parameter can be used without providing a previous one :

 function foo(?x : A, ?y : B) {
 }

 foo(new A()); // same as foo(new A(),null);
 foo(new B()); // same as foo(null, new B());
 foo(); // same as foo(null,null);
 foo(new C()); // compile-time error
 foo(new B(),new A()); // error : the order must be
preserved

However, such usages of optional arguments could be considered quite
advanced.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

30

Conditional Compilation
Sometimes you might want to have a single library using specific API
depending on the platform it is compiled on. At some other time, you might
want to do some optimizations only if you turn a flag ON. For all that, you
can use conditional compilation macros (AKA preprocessor macros):

Here's an example of multiplaform code :

 #if flash8
 // haXe code specific for flash player 8
 #elseif flash
 // haXe code specific for flash platform (any
version)
 #elseif js
 // haXe code specific for javascript plaform
 #elseif neko
 // haXe code specific for neko plaform
 #else
 // do something else
 #error // will display an error "Not implemented
on this platform"
 #end

Here's another example for turning on some logs only if mydebug flag is
used when compiling the code (using -D mydebug):

 #if mydebug
 trace("Some debug infos");
 #end

You can define your own variables by using the haXe compiler commandline
options.

Inline
The inline keyword can be used in two ways: for static variables and for any
kind of method.

Inlining Static Variables
For static variables, it's pretty simple. Every time the variable is used, its
value will be used instead of the variable access. Example :

class Test {
 static inline var WIDTH = 500;
 static function main() {
 trace(WIDTH);
 }
}

Using "inline" adds a few restrictions :

 the variable must be initialized when declared
 the variable value cannot be modified

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

31

The main advantage of using "inline" is that you can use as many variables
as you want without slowing down your code with these variables accesses
since the value is directly replaced in the compiled/generated code.

Inlining Methods
The principle is the same for a method. The less expensive function call is
the one that is never done. In order to achieve that for small methods that
are often called, you can "inline" the method body a the place the method
is called.

Let's have a look at one example :

class Point {
 public var x : Float;
 public var y : Float;
 public function new(x,y) { this.x = x; this.y = y; }
 public inline function add(x2,y2) { return new Point(x
+x2,y+y2); }
}
class Main {
 static function main() {
 var p = new Point(1,2);
 var p2 = p.add(2,3);
 // is the same as writing :
 var p2 = new Point(p.x+2,p.y+3);
 }
}

Again, there's some limitations to inline functions :

 they cannot be redefined at runtime
 they cannot be overridden in subclasses
 an function containing "super" accesses or declare another function

cannot be inlined
 if the inline function has arguments, then the arguments evaluation

order is undefined and some arguments might even be not evaluated,
which is good unless they have some expected side-effects

 if the inline arguments are modified in the inline function, then they
might be modified as well in the original function, for example :

 inline function setX(x) { x = 3; }
 inline function foo() {
 var z = 0;
 setX(z);
 trace(z); // 3
 }

 if the inline returns a value, then only "final returns" are accepted, for
example :

inline function foo(flag) { return flag?0:1; } //
accepted
inline function bar(flag) { if(flag) return 0; else
return 1; } // accepted

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

32

inline function baz(flag) { if(flag) return 0;
return 1; } // refused

Apart from these few restrictions, using inline increase the compiled/
generated codesize but brings a lot of additional speed for small methods.
Please note that it's also possible to inline static methods.

Revision: Aug 8, 2008 Ref: http://haxe.org/ref/
__

33

